REVISION OF AUSTRALIAN SPECIES OF THE GENUS HOICONIA THORELL (HETEROPODIDAE: ARANEAE)

D. B. HIRST

HIRST, D. B. 1991. Revision of Australian species of the genus Holconia Thorell (Heteropodidae: Arancae), Rec. S. Ausb Mus: 24(2): 91-109,

Australian species of the genus Holcomia Thorell, 1877 are revised. Holconia hirsula (L. Koch), H. immanis (1. Koch), H. insignis (Thorell) type species, and H. nigrigularrs (Simon) are valid 1axa. Holconia subdola Thorell is a synonym of H. hirsula. Isopeda simoni Rainbow is a synonym of H. nibrigularis. Mygale whitei Bonnet is synonymised with II. immunts. The following new species are deseribed: H. colberti, H. Slindersi, H. murravensis, H. neglecta and H. westralia.
D. B. Hirst, South Australian Museum, North Terrace, Adelaide, South Australia 5000. Manuscript received 13 November 1989.

This is the fourth part of a revision of the Australian Heteropodidae excluding Heteropoda Lalreilic, 1804. Hirst (1990) revalidated the genus Holconia when outlining the genera and relimiting Australasian species involved in the genus/sopeda (sensu la/o). Here, Australian taxa of the genus Holcomia are revised.

Koch (1867) deseribed Delena immanis from Brisbane, al that time understandably selecting that genus as morphologically similar. Thorell (1870) erected the genus Kocomia, for a new species, V. insignis, Koch (1875) transferred immanis to Voconia and described V. dolosa. Koch's understanding of that genus is questionable as at the same time he described Isopeda hirsuta, a species which should have been difficult to separate from dolosa or insignis, the latter which he redescribed. Finding Foconia preoccupied. Thorell (1877) replaced that name with Holcortia. Three more species, H. subdola, H armillata and H. beccarli were described by Thorell (1881, 1887, 1892). The latter two, being non-Australian, are not included in this revision. Hogg (1902) saw no reason for retaining Holconia, and synonymised it with I sopeda. Two further species, I. engrigularis and I. woodwardi were described by Simon (1908). As the latter name was a homonym of Isopeda woodwardi Hogg, Rainbow (1911) replaced this witti simoni. Little has been produced in the following years concerning this group of heteropodids regarded here as Holconia, but Bonnet (1957) proposed the name Mygale whitei for a species briefly described and Illustrated by J. White (1790) and named only 'White-jointed spider', Main (1985: 48) noted that Whe species was 'a sparassid (Sparassidae Heteropodidae)': The ilhustrations atre undoubtedly of H. immanis and Bonnet probably chose the genus Mygale solely on the reference io that species as 'Mygale de White' by Walckenaer (1837).

Materials and Methods

Measurements were made with an eyepiece graticule on a Wild microscope and are given in millimetres except cye diameters, interspaces and MOQ (median ocular quadrangle) dimensions which are expressed as relative to the diameter of an AME, Other materials and methods are given in Hirst (1989). Acronyms are: $\mathbf{N M}$ - Australian Museum, Sydney; ANIC - Australian National Insect Collection, Canberra; BYM - Dr BY. Main, Zoology Department, University of Western Australia, Nedlands; MCG - Museo Clvico di Storia Naturale 'Giacomo Doria', Genoa; NHMW - Naturhistorisches Museum, Wien; NHRM Naturhistoriska Riksmuseum, Stockholm; NMV Museum of Victoria, MelboLrne; NTM - Northert Territory Muscum, Darwin; QM - Queensland Museum, Brisbane; SAMA - South Austratian Museum, Adelaide, SMNS - Stadtliches Museum fuir Naturkunde, Stutgart: WAM - Western Australian Museum, Perth; ZMB - Museum für Naturkunde an der Universitat Humboldt zu Berlims ZMH - Zoologisebes Museum, Hamburg.

Disctission

The term 'subembolic apophysis' (Figs 1-7, 15) was introduced (Hirst 1990) to describe the apophysis found in species of Folconia and distinguishing it from the tegular apophysis found in several other genera of the Deleninae, Those soructures are probably bomologous in function. With the exception of F, nigrigulatis the subembolic apoplyysis bridges a 'gap' between the embolic base and the regulum. Rising prodistally from the embolic base to a rounded point or "knob", the subembolic apophysis is connected to the regulum on the prodorsal side of the apophysis.

Holconia nigrigularis differs in having the subembolic apophysis rising more prolaterally on the embolic base (Fig. 14) adjacent to its junction wilt the tegulum, and not being fixed to the tegulum. This state also occuts in one species of a sister genus (Hitst in prep,) but then is smaller and accompanied by a reduced tegular apophysis.

A distinctive character of female Holconia species required a second term, the 'epigynal sclerite' (Fig. 25) in reference to a lateral convexity in the posterior thalf of the epigynum (Hirst 1990), The epigynal sclerite is a natrow to broad extension of the lateral rimi of the epigynum over the posiero-lateral corner of the fossa. In lsopedia and related genera the lateral rim torns sharply downwards to produce a concavity adjacent to the postero-lateral edge of the fossa. The epigynal selerite is a useful diagnostic female character when used with epigynum shape and number of insemination duct coils.

Holconia Thorell

Vocoria Thorell, 1870; 382.
Holconia Thorell, 1875: 485 (nom. nov for Voconia Thorell, pre-occupied), Hirst, 1990: 17.
Isopeda: Hogg, 1902e 429 (in part).

Diagnosis

Males wah subembalic apophysis, Tegutam prodistally rounded without apophysis. Female epigynum with conyex epigynal solerite extending over posserior lateral cormer of lossis

Description

Large spiders, carapace length often 9-15 mm; 6-9 times longer than high, highest posterior to ocular area; caput 'U'shaped; fovea long, narrow, deep. Anterior eye row slightly recurved; line drawn behind posterior eyes recurved; ALE Largest; PLE often subequal to AME; PME smallest, low-domed, barely, or not visible in laleral view; AME closer to each other than to ALE. Clypeus I/8 to 1/2 width of AME, Cheliceral groave with two promarginal reeth; four or five retromarginal reeth, distal rooth subequal or rather equal to subdistal tooth except in $H_{\text {i mananis io which it is larger. }}^{\text {in }}$ I.abium barely wider than long, apex somewhiat truncate. Sternum longer than wide, iruncate anteriorly, broadest mid-length between second coxae, narrowing to a poinl between fourth coxae. Leg I, when outsretched alongside leg II, reaches 10 mid-length of metalarsus 11 , rarely to near distal end of meratarsus 11 . Three pairs of ventral spines on all tibide with distal pair adjacens to arriculation with metatarsi, Scopula on all metatarsi and tarsi, sparse on metatarsi IV, largely replaced by stour bristles. Abdomen usually with pattern of large ill-
defined brown or blackish patches, broadly ovate in its normal condition, flattened dorso-ventrally. Male palpal tibial apophysis subequal in length to palp tibia, relatively straight, lanceolate, usually with incurved apex; membranous support on inner edge of apophysis base forms a somewhat cortimuous straight line with apophysis. Tegular apophysis absent. Embolic base with prodistal knob-like subembolic apophysis connected to tegulum, or semicircular and not connected to tegulum; embolic base rarely with granulated arca, wher present appears as a series of tine ridging (Fig. 14); area between conductor base and embolus broad, depressed (Fig. 14). Embolus with 7/is to $11 / 2$ coils in distai haif of cymbium. Coil stack almost width of cymbiame fiest complete coil smaller than several subsequent coils, difficult to see in ventral view without manipulation of embolus, Tip of cmbolus constriets and tapers to a fine point in the last half a turn or less. Femate epigyilum large, roughly oblong but broader posteriorly; sclerotised Jateral rims often somewhat paralle in anterior half: in posterior half a convex extension of the lateral rim, the epigynal sclerite, extends partly aver fossa. Fossa smooth, rarely darkly pigmented, often narrower and somewhat iruncate posteriorly, posterior seetian often with depressed or raised areas. Fossa and sclerotiscd rim lack setae. Vulva with paired insemination duets coiled 8-11 times; spermathecae with moderaiely long, usualiy curved, spermathecal sacs.

Type species

Voconia insignis Thorell, 1870,

Remarks

Spermathecal sacs may be widely separated (fig. 10. Hirst 1990) or close together (Fig, 23), They appear ta be intraspecifically variable and diagnostically useful only at generic level. Colouration of H. immanis and H. nigrigularis is distinctive but other species are uniformly coloured. Spination and leg lengths are very similar within (he genus. Leg ratios (leg length Carapace length) are also intraspecifically variable. Lees lengths and spination are givent for the type species, Holconia insignis in Hirst (1990).

Four species groups or sister groups are outlined within the genus, but these are equivocal as definitsors of the groups alter if different character combinations are used. Holconia nigrigularis lacks the fixed subembolic apophysis of other species and has a much flater carapace which isolate this species from others in the genus. On the other hand, the prevence of four reiromarginal cheliceral teeth and a broader male palpal tibial apophysis ally this species wilh a turther group, comprising H, colhersi and H. westratid, but which has more coils in the
embolus and insemination duct as well as a relatively higher carapace, and in the case of H. colberti occasionally five retromarginal cheliceral teeth.

Grouping of remainting species may be determined by the degree of coiling of the embohs or insemination ducts and carapace height. The largest group comprises H. insignis, $H_{\text {. flindersi, }}$ H. murrayensis and H. immanis. While H immanis. is easily diagnosed by its distinctive pattern and larger subembolic apophysis, other species in this group are difficult to separate. This is futther complicated by the sympatric occurrence in part of the distributions of insignis/murrayensis and murrayensis (flimdersi (Fig 36). Grouping by another character, the distal retromarginal cheliceral tootb, isolates H. immanis from all other Holconia species in having that tooth the largest.

Holconia hirsuta and H. neglecia can be grouped on their redaced embolic and insemination duct coiling but may well be included in the previous group. H. hirsuta differs in the marginally greater spacing between the median and subdistal retromarginal teeth (Fig, 20), it which it is paralleled by H. westraliu (Fig. 21), but a similar spacing of those teeth is occasionally found in H. insignis (Fig. 19).

Key To The Species of Holconla

3 - Abdomen with ventral pattern............... 2

- Abdomen lacks ventral pattern............... 3

2 - Abdomen without strong dorsal pattern, venter with ill-defined grey-black parch. Carapace very flat, depressed medially. Clypeus less than $1 / 4$ width of AME. Embelic hase with low rounded subembolie apophysis. Epigynum broad and rounded; epigynal sclerite narrow, shorl to moderate lengthnigrigularis (Simon)

- Abdomen with conspicuous black stripe in anterior half; venter wilh blackish badge markings, pale bordered. Distal retromarginal cheticeral toont largest-Subentolic apophysis high, knob-like Epigynum lateral rims slighty diverging; epigynal sclerite broad, long.immanis (L, Koch)
3 - Carapace low, about $7-8$ times longer than high; clypeus about $1 / 3$ width of AME, 5 retromargina cheliceral teeth
- Carapace higher, aboul 6 times longer than thigh; clypeus $1 / 2$ width of AME. Usually with 4 retromarginal cbeliceral leeth _............. 8
4 - Males with $7 / 1 / 2108$ embalic coils. Females with a similar number of insemination duct coils...5
- Males with 9 to 10 embolie coils. Females with a similar number of josermiation duct coils ... 6
5 - Males with small subembotic apophysís. Eemale epigynum with somrewhat parallel lateral rims at first then sharply diverging: epigynal sclerite small. short,
.hirsula (L. Koch)
- Males unknown. Females with y insemination duct
coils; epigyoum with gradually diverging lateral sides, broad posteriorly; epigynal scleme narrow at posterior only...

Heglecra sp, noy.
6 - Males with $9 / 21010$ embolic coils, Femate with about 10 insemination duct calls.

Is.........

- Males with 9 to $9 / 4$, tarely to $91 / 2$ embotic coils. Female with abou 9 insemination duct coils; epigynum with anterior half of lateral side slightly diverging; epigynal scmerite less than $1 / 2$ lengrh of ерірулит .murrayensis sp. nov,
7 - Male subembolic apophysis broad at apex. Female epigynum wilh anterior section of lateral side parallel over is length of epigynum; epigynal sclerite $2 / 5$ length of epgynum
findersi sp. nav.
- Male subemboic anophysis narrow at apex. Female epigynum with anteror section of lateral side slightly diverging for $1 / 2$ lengith of epigynum; epigynal sclerite usuany $1 / 2$ length of epigynum insignis (Thorell)
8 - Male with 9% to $10 / 4$ embolic coils; subenbolic apophysis smallish. Female epjeynal sclerite long, narmow.

Westralia sp nov,

- Males. with it to $11 \frac{1}{2}$ embolic coils; subembotic apoptysis broad. Female epigynal sclerite short, broad.
colberi spi. nov.

The insignis Group

Clypeus width abour $1 / 3$ diameter of AME. Male with 9 to 50 embolus coils; subembolic apophysik largish. Female epigynum telatively narrow to broad; lateral rims not diverglag greatly to posterior H_{1} insignis, H_{1}. findersi, H nurrayensis and H. immanis are included in this grouping although the last differs in having a larger distal retromarginal cheliceral tooth and possesses a distinctive pattern. In other respects $H_{\text {. }}$ immanis is most similar to H, insignis, The group has an eastern and south-eastern distribution.

Holcomia iasignis (Thorell)
(Figs 2, 19, 24, 36)
Voconia insignis Thorell. 1870 383. Syntypes or and Q, Queenslana, Australia, Pessler, NHRM (Thorell Coll.), examined.
Holconia insignis: Karseh, 1878: 791. Hirst, 1990: 18, figs 6-10, table 4.
isopeda insignis: Hogg, 1902: 432.

Diagnosis

Male subembolic apophysis rounded, apex curved slightly to venter, embolus with $91 / 2$ to 10 coils. Female epigynum broad anteriorly; lateral rims somewhat parallel or slightly diverging in anterior half, broadest posteriorly; epigynal sclenite lons, usually greater than half length of fossa. Insemination ducts with about 10 coils (5ig, 24).

FIGURES 1-7. Subembolic apophysis of Holconia males: 1, H. immanis (L. Koch), SAMA N1988515; 2, H. insignis (Thorell), SAMA N1988522; 3, H. flindersi, holotype; 4, H. murrayensis, holotype; 5, H. hirsuta (L. Koch), QM S12592; 6, H. westralia, holotype; 7, H. colberti, holotype. eb, embolic base; sa, subembolic apophysis; t, tegulum. Scale line 0.5 mm .

Variation

Carapace length of males, 9.68-12,90, mean 11.78 $(n=8), 2$ with $91 / 2$ embolus coils, 4 with $9 / 4$ and 2 with almost 70 coils. Carapace length of females. 12.10-15.80, mean $13.44(\mathrm{n}-7)$, Usually with 5 retromarginal cheliceral teeft; distal looth often angled more anteriorly, spaced about a toolh width aparl and rather equal or subequal to subdistal tooth (Fig. 19).

Distriburion

Oceurs in Queensland and New South Wales in and west of the Great Dividing Range from near Rockhampton to south of Sydney. In Queensland it cecurs wesiward to Imjune and, in New South Walcs, to Cobar and Lake Cowal (Fig. 36).

Other murerial examined

Queensland: $\rho, 2$ juv., Banana, $24^{\circ} 28^{\prime} \mathrm{S}$, $150^{\circ} 08^{\prime}$ E, AM KS19737: q, Condamine, $26^{\circ} 56^{\prime} S$, $1500^{\circ} 08^{\prime} \mathrm{E}, \mathrm{AM}$ KS19646: Q, Eidsvold, $25^{\circ} 22^{\prime} \mathrm{S}_{\text {, }}$ $151^{\circ} 07^{\prime}$ E, QM S12595; Q, same locality, SAMA N1988520; 2 juv, Enfield Station, $27^{\circ} 06^{\circ} \mathrm{S}$, $159^{\circ} 02^{\prime} \mathrm{E}, \mathrm{QM} ; \quad \mathrm{Q}$, Goondiwindi, $28^{\circ} 33^{\prime} \mathrm{S}$, $150^{\circ} 18^{\prime} \mathrm{E}, \mathrm{QM}$ Si2596: or, Q_{1} Injune, $25^{\circ} 51^{\prime} \mathrm{S}$, $148^{\circ} 34^{\circ}$ E, QM 14143 , juk., Kroombit Tops, $24^{\circ} 26^{\prime} \mathrm{S}, 150^{\circ} 43^{\prime} \mathrm{E}, \mathrm{QM} ; 3$ Q 9 , 6 juy., Lake Nuga
 Marlaybrook $26^{\circ} 54^{\prime} \mathrm{S}, 151^{\circ} 36^{\prime} \mathrm{E}, \mathrm{QM}$; ${ }^{\circ}$, Moombah, ca $27^{\circ} 59^{\circ} \mathrm{S}, 149^{\circ} 18^{\prime} \mathrm{E}$, QM SI2598; juv. Mt Archer, Kilcoy, $26^{\circ} 59^{\circ} \mathrm{S}, 152^{\circ} 38^{\prime} \mathrm{E}, \mathrm{QM}$; of, Ottley, $28^{\circ} 20^{\prime} \mathrm{S}, 14^{\circ} 044^{\circ} \mathrm{E}, \mathrm{QM} 14142 ;$, St George, 100 km S of, AM KS19736; 9. Theodore, $24^{\circ} 57^{\prime} \mathrm{S}, 150^{\circ} 05^{\prime} \mathrm{E}, \mathrm{QM} ; \sigma^{\prime}$, Wallumbilla, $26^{\circ} 35^{\prime} \mathrm{S}$, 149011'E, QM 14144. New South Wales: 8 , Bathurst, $33^{\circ} 25^{\prime}$ S, $149^{\circ} 35^{\prime}$ E, AM KS16701; 0°. Bonnet Bay, Sydney, AM KSI9675; 3 juv,, Brooklana, $30^{\circ} 16^{\prime}$ S, $152^{\prime \prime} 53^{\prime}$ E, AM KSI9677-8; Q. Crowther, $34^{\circ} 06^{\prime} \mathrm{S}, 148^{\circ} 30^{\prime} \mathrm{E}$, AM KSI96SI; O^{\prime}, Lake Cowal, $33^{\circ} 36^{\prime}$ S, $14^{\prime \prime} 26^{\prime}$ E, ANIC; © + Loftus, $34^{\circ} 03^{\prime} \mathrm{S}, 151^{\circ} 03^{\prime} \mathrm{E}, \mathrm{AM} \mathrm{KSl} 6693$; juv., Marrickville, Sydney, AM KSn9649; or, Nyngan, $31^{\circ} 34^{\prime} \mathrm{S}, 147^{\circ} 12^{\prime} \mathrm{E}$, AM KSIG478; O , penult, P, Pilliga Scrub, $30^{\circ} 40^{\prime} \mathrm{S}, 148^{\circ} 50^{\prime} \mathrm{E}$, SAMA N1988522-3; penult. Q. Ryde, Sydney, AM KS13799; o, Sydney, $33^{\circ} 53^{\prime}$ S, $151^{\circ} 13^{\prime}$ E, AM KS16705; 오 Woronara, Sydney, AM KSI6645; ㅇ. Young, $34^{\circ} 19^{\prime}$ S, $148^{\circ} 18^{\prime}$ E, AM K'S16598.

Holconia flindersi sp, nov,

(Figs 3, 9, 26, 36)
TVpes
Holotype: or, Wilmingion, $32^{\circ} 39^{\prime} \mathrm{S}, 138^{\circ} 00^{\prime}$ Ev South Ausiralia, March 1986, H. Kairl. SAMA N1989264,

Allolype: Q, Warren Gorge, $32^{\prime 2} 11^{\prime} \mathrm{S}, 138^{\circ} 00^{\prime} \mathrm{E}$, South Australia, 19. vi. 1988, G. and H. Kairl, SAMA N1988559.

Paratypes: Q, Creekbed S of Woolshed Flat, Pichi Richi Pass, 32,28 'S, $137^{\circ} 58^{\prime} \mathrm{E}$, South Australia, 27. iv. 1987, D. Hirst, SAMA NIP88544; or, same data, SAMA N1988545; Q, Mambray Creek, $32^{\circ} 40^{\prime} \mathrm{S}, 138^{\circ} 02^{\prime} \mathrm{E}$, South Australia, 24. iv. 1972, P. Martinsur, SAMA N1988546.

Diagnosis

Most similar to insignis, separated in the male by the straighter palpal libial apoptiysis and thicker more upright subembolic apophysis, and in the female by the longer parallel sided anterior section of the epigytum and shorter, narrower epigynal sclerite.

Holotype male

CL 10.32, CW 10.13. AL 9.80. AW 6.85.
Colour in alcohol! Carapace orange-browu with brown suffusion; caput darker orange-red. Brownblack setae form cross-banding posterior to caput; whitish setae in ocular area. Chelicerae reddish with yellowish upright setae; proximally with adpressed white setae. Maxillae and labium dark brown Sternum yellow-brown; long greyish setae. Legs yellow-brown; blackish suffusion proventrally on femur I; short blackish setae at proximal ends of anterior femora and tibiae and around spine bases of femora prolaterally; white setae ventrally on femora, patellae and medially on tibias Abdomen yellowish with brown-black patches of setae forming transverse banded patern, anterior band broken by yellowish streak: venter yellowish with orangish selae.

Eyes: AME 0.68. AME: ALE: PME: PLE $=1$: 1.16: 0.69: 1.15. Interspaces: AME-AME (0.37, AME-ALE 0.38, PME-PME 1.38, PME-PLE 1.59, AME-PME 0.85, ALE-PLE 1.06. MOQ, aw: pw: $1-2.37: 2.76: 2.44$. Width of clypeus to AME 0.29. Chelicerae: retromarginal teeth 5 , similar to insignis. Labium: L 1.92, W 2.11, Sterrum: L. 5.53, W 4.59 Legs: anterior leg ratios $1-5.6,11=6.0$.

Palps: Tibial apophysis relatively straight. Embolus with $97 / 2$ coils.

Allotype female (as male except as follows)
CL. 12.35, CW 11.89. A1. 14.95, AW 11.40.

Eyes: AME 0.74. AME: ALE PME: PLE - I: 1.16: 0.69 : 1.16, Interspaces: AME-AME 0.39 , AME-ALE 0.54, PME-PME 1.43, PME-PLE 1.72, AME-PME 0.91, ALE-PLE 1.22. MOQ, aw: PW: $\mathrm{L}=2.39: 281 ; 2.54$. Width of clypeus to AME 0.32 Labium: L 2.11, W 2,66. Slernum: 1.6.53, W 5.30. Legs: anterior leg ratios $1=4,2,11=5.0$.

Epigynum: lateral sides somewhat parallel in anterior section for more than hall length of fossa: epigynal sclerite moderately large, curved, extending less than $1 / 2$ length of lossa.

FIGURES 8-13. Holcomiu males, 8-10, left palpat tibial apophysis and proximal portion of tarsus, retrolateral: 8, H. immanis (L. Koch), SAMA N1988515;9, H. flindersi, holotype; 10, H. murrayensis, holotype. I1, left palpal tibial apophysis and whole tarsus of holotype H. hirsula (L. Koch). 12-13, left palpal tibial apophysis and proximal portion of tarsus: 12, H. colberti. holotype; 13, H. westralia, holotype. Scale line 0.5 mm .

Variatiori

Carapace length of maless, 10,02 -13.41, mean $11,43(n=6)$. Embolus coils $9 / 2$ to 10. Carapace length of Females, 11.72-14.78, mean $13.14(n=20)$. Retromarginal chelicersl weeth usually 5, occasionally willit 4 on one chelicera. Insemination duet coils about $9 / 2$ to 10 .

Distribution and remarks

Oceurs throughout the Flinders Ranges in South Ausiralia, east to Broken Hill in New South Wales and Meringur in the north-west corner of Victoria (Fig. 36). It is frequentity found near creeks on Encalyptus camaldulensis, and oflen under Casuarina bark when away from waterways.

Other material examined

South Australia: P. Arcoona Creek, $30^{\circ} 28^{\prime}$ S, $138^{\circ} 58^{\circ}$ E, SAMA NI989265; 9, Gadniba Station, ca $30^{\circ} 25^{\prime} \mathrm{S}, 139^{\circ} 05^{\prime} \mathrm{E}, \mathrm{SAMA}$ N198856i; Q, Hawker, $31^{\prime \prime} 53^{\prime}$ 'S, $138^{\circ} 25^{\prime}$ E, SAMA N 988550 ; 早, Holowilena Station, $31^{\circ} 53^{\prime} \mathrm{S}, 138^{\circ} 50^{\circ} \mathrm{E}$, SAMA N1990275: : Q, Matobray Creek, $322^{\prime} 49^{\prime}$, $138^{\circ} 05^{\prime}$ E, SAMA N1988546; 2 Or O, penult. 9 , Melrose $\left.32^{\circ} 50^{\prime} \mathrm{S}, 138^{\circ} 1\right]^{\prime} \mathrm{E}$, SAMA N1988541-3; penulL. 9 , Moulooloo, $30^{\prime \prime} 59^{\prime}$ S, $138^{\circ} 35^{\prime}$ E, SAMA N1989266; juv., Mt Serle, $30^{\prime} 30^{\prime} \mathrm{S}$, $138^{\circ} 54^{\circ} \mathrm{E}$, SAMA N1989267: 2 Q P, 'North' (no exaci Iocality). SAMA N1988497: O, Oakbank Station, $33^{\prime \prime} 03^{\prime} \mathrm{S}$, $140^{\circ} 35^{\prime} \mathrm{E}, \mathrm{SAMA}$ N1988563; Q. Orroroo, $32^{\circ} 44^{\prime} \mathrm{S}$, $138^{\circ} 37^{\circ} \mathrm{E}$, SAMA N1989268; Q, Quori, $32^{\circ} 21^{\prime} \mathrm{S}$, $138^{\circ} 02^{\prime}$ E, SAMA NI988549; D. R, Sturt Vale Station, $33^{\circ} 15^{\prime}$ S, $140^{\circ} 02^{\prime}$ E, SAMA N1988564-57, 8 p 8, penult, \circ°. Wilpeñ, $31^{\circ} 30^{\prime} \mathrm{S}, 139^{\circ} 19^{\prime} \mathrm{E}$, SAMA N1988552-60; or. 9 , Wirrealpa, $31^{\circ} 08^{\prime} \mathrm{S}$. 138"58'E, SAMA N1988547-8: Q, Yunta Dam, $32^{\prime} 37^{\prime} \mathrm{S}, 139^{\prime} 34^{\prime} \mathrm{E}$, SAMA N1988562. New Soulh Wales: p, Broken Hill, $31^{\circ} 58^{\prime} \mathrm{S}, 141^{\circ} 27^{\circ} \mathrm{E}$, SAMA N1988521; Q. same locality, AM KS5094; Q. Wangumma, $34^{\circ} 09^{\prime}$ S. $141^{\prime} 27^{\circ} \mathrm{E}$, NMV. Victoria: a, Meringut, $34^{\circ} 24^{\prime} \mathrm{S}, 141^{\circ} 25^{\prime}$ E, NMV.

Hokemia murravensis sp. mov.

(Fjgs 4, 10, 27-28, 36)
Tupes
Holotype: Midura, $34^{4} 11^{\prime} \mathrm{S}, 142^{\prime \prime} 10^{\prime} \mathrm{E}$, Victoria, July 1955, Favalora, NMV K-0917.

Allotype: 7. Nampoo Stn, Lake Victoria, $34.03^{\prime} \mathrm{S}, 141^{\circ} 10^{\prime} \mathrm{E}, \mathrm{SW}$ New South Wales, under bark of red gum, 26. vi. 1967, R.R. Blackwood, NMV K-0918.

Pararypers. G, BalakTava Gliding Club Airfield, $c a 2 \mathrm{~km} \mathrm{~N}$ of Whitwarta, $34^{\circ} 05^{\prime} \mathrm{S}, 138^{\circ} 20^{\prime} \mathrm{E}$, South Ausralia, 28. i. 1989 A. Horton, SAMA N1989276; Q, fallers of shack, few km S al Margan on River Murray, $34002^{\prime} \mathrm{S}, 139^{\circ} 40^{\prime}$ ' , South Ausitalia, 28. xii. 1978, A. Edwards, SAMA N1988538.

Diagnosis

From insignis and flindersi by the male having a lower embolic coil number of 9 to less than $9 / 1 /$ and subembalic apophysis with slightiy larger apex. Female with about 9 insemination duet coils.

Holotype male

CL 14.21, CW 13.92 AL 17.40, AW 11.25.
Colour in alcohol: Carapace reddish, lareral and posterior edges orange-red; caput dark reddish. Selae brownish medialiy; whitish adpressed setac on caput margins and posterior to ocular area, posterior half of caput with yellow-orangish adpressed setac. Cbelicerae dark red-brown to blackish; setae yellow-brown. Maxillae and labium red-brown. Sternum orange-brown. Coxae yellow to orange-brown, Legs orange-red; dense white setac on femora dorsally, venter of patellae and tibiae Abdomen yellowish with brown parches of setace divided anteriorly by yellow-brown sireak. Venter yellow.

Eyes: AME 0.82. AME: ALE: PME: PLE - $1=$ 1.20: 0.71 : 1.12. Interspaces: AME-AME 0.4t, AME-ALE 0.51, PME-PME 134, PME-PLE 1,78 , AME-PME I, ALE-PLE 1.12. MOQ, aw: pw: $1=$ 2.41: 2.76: 2.61, Width of clypeus to AME 0.37. Chelicerae: retromarginal teeth 5 ; distal and subdistal teeth separated by $1 / 2$ tooth width, Labium: L 2.41, W 2.64. Sternum: L 7.42, W 6.28 . Legs: anterior leg ratios $1=4.6, \mathrm{IL}=5.5$.

Falps; Subembolic apophysis broader distally and less curved than in insignis. Embolus with 9 coils,

Allotype femate (as holotype male except as follows) CL 14,35, CW 13.89. AL 16,25, AW 12.70.
Colour in alcohol: Generally darker than male: legs reddish from patellae to metalarsi. Abdomen With anterior yellow-brown streak.

Eyes; $\triangle M E$ 0.81. AME: ALE; PME: PLE -1 : 1.191 0.69: 1.12. Jmerspaces: AME-AME 0.44, AME-ALE 0.60, PME-PME 1.44, PME-PLE 2.20, AME-PME 0.83, ALE-PLE 1.14. MOQ, aW: pw: $1=2.44 ; 2.83 ; 2.48$. Width of clypeus to AME 0.43 Labiun: L 2,47, W 2,87, Sternum: L. 7.69. W 6.42. 1 egs: anterior leg ratios $1=4.1, L I=4.8$.

Epigynum: epigynal sclerite begins midway along lateral side, broad near anterior (Fig. 27).

Variaïon

Carapace leneth of males, 11.62-12.49, mean 12.16 ($n=3$). Embolic coils 9 , but a male From Unley Park has almost $91 / 2$, Carapace length of females, 13.08-J6.22, mean $14.32(\pi=19)$. Epigynal sclerite often rather broad anteriorly (Fig, 28). Insemination ducts with 9 coils. Usually with 5 tetromarginal cheliceral teeth, much as in insignis. Colour generally darker than in H, flindersi.

FIGURES 14-21. Holconia males. 14-17, H. nigrigularis (Simon): 14, left palpal tibial apophysis and tarsus of syntype male ZMB 28.740, ventral; 15, embolic apophysis, SAMA N1988485; 16, left palpal tibial apophysis and proximal portion of tarsus, retrolateral, SAMA N1988498; 17, left retromarginal cheliceral teeth, SAMA N1988485. 18-21, left retromarginal cheliceral teeth: 18, H. immanis (L. Koch), SAMA N1988515; 19, H. insignis (Thorell), SAMA N1988522; 20, H. hirsuta (L. Koch), QM SL2592; 21, H. westralia, holotype. e, embolus; eb, embolic base; cb, conductor base; sa, subembolic apophysis. Scale lines $0.5 \mathrm{~mm}, 17-21$ to same scalc.

Discrilhution

Gencrally ocours along the Murray River and its tributaries in northern Vintoria, southern New South Wales and South Ausiralia (Fig. 36). In South sustralia it is found alone the Murray River from the Victorian border south to Murtay Bridge, westwards along the River Marne and through the Barossa Valley to the Adelaide Plains in areas supporting Eucalyptus camatdutensis, and is known as far north as Whitwarta, In New Soush Wales it extends to Lake Cowal where il is sympatric with H. insignis. A penultimate specimen from Wilcannia is included in this taxon and indicates that the species is found along the Darling River system northwards to this locatity. A female from Walwa in sorn-eastern Victoria is tentatively included until males from the area become available. Two populations appear to be isolated from the Murtay River population. The lirst occurs on the Ileocolplans and waterways of Lake Albacutya and Wypetied National Park in nomb-western Victoria while the second includes the Adelarde Plains and Barossa Valley west of longinde $139^{\prime} 00^{\prime}$.

Oher material examined

Victoria: 2 Q Q , Benalla, $36^{\prime} 33^{\circ} \mathrm{S}, 145^{\circ} 59^{\prime} \mathrm{E}$, AM KS19950, AM KS19953; Q, Gunbower. $35^{\prime} 58^{\prime} \mathrm{S}, 144^{\prime} 22^{\prime} \mathrm{E}, ~ N M Y$; S^{\prime}, Keramg, $35^{\circ} 44^{\prime} \mathrm{S}$, $143^{\circ} 55^{\prime} \mathrm{E}, \mathrm{NMV}$; juv, Lake Albaculya, ca $35^{\prime} 46^{\prime} \mathrm{S}$, $14203^{\prime} E$, AM KS19954; Ω^{2}, penult. or Merbein,
 $35^{\circ} 58$ 'S. 147P4. E, AM KS19956; 5 Q Q, of, Wyperledd, $35^{\circ} 32^{\circ} \mathrm{S}, 141^{\circ} 58^{\circ} \mathrm{E}$, AM KS19944-7 (0 $=$ KSIg945). New South Wales: juv., Balranald, $34^{\circ} 38^{\prime} \mathrm{S}, 14^{\prime \prime} 34^{\prime} E$, SAMA N1988524 व, Lake Cowal, $33^{\circ} 35^{\prime} \mathrm{S}_{,} 147^{\circ} 26^{\prime} \mathrm{E}, ~ A N I C: \quad$, Lake Minggo, $33^{\circ} 44^{\prime} \mathrm{S}, 143^{\circ} 02^{\prime} \mathrm{E}, \mathrm{SAMA}$ N1989269; репи!!. इ, Witcamma, $31^{\prime} 34^{\prime} \mathrm{S}, 143^{\circ} 22^{\circ} \mathrm{E}$, AM KSl6657. South Aasiralia: 3 Q Q, Adelade, 3456^{\prime} S, $1388^{\prime 3} 36^{\prime}$ E, SAMA N $1988525-7 \cdot 8$. Bagot Well, $3419 \mathrm{~S}, 13859$ E, SAMA N1988532; Q, Blanchemoms, $34.21^{\prime} \mathrm{S}, \quad 139.37^{\circ} \mathrm{E}$, SAMIA N1988536; G, Chowilla, $34^{\circ} 01^{\circ} \mathrm{S}, 140^{\circ} 50 \mathrm{E}$, SAMA N1988540; penult of, same locality, SAMA N1988405; 2 juv, Gilen Osmond, Adelaide, SAMA N1989270-1; 7, Henley Beach, Adelaide, SAMA N1988528; G. Hoylcton, 3402'S, $138.34^{\circ} \mathrm{E}$, SAMA Ni988533:2 9 P, function of River Marne and River Murtay, $34^{\prime} 40^{\prime} \mathrm{S}, 139^{\prime} 19^{\prime} \mathrm{E}$, SAMA N1988534-5; Q, Lake Bonney, $34^{\circ} \mid 3^{\circ} \mathrm{S}, 140^{\circ} 27^{\prime} \mathrm{E}$, SAMA N1985143, 2, Morgon, 34-9 's, $1399^{\circ} 40^{\circ} \mathrm{E}$, SAMA N1988557. A, same kralid, SAM/
 SAMA NL989272; Y Sandy Creck, $3436^{\prime} \mathrm{S}$, $138^{\circ} 49^{\circ} \mathrm{E}$, SAMA N1988531; or, Unley Fark, Alefalde, SAMA N1988529, $\%$, Virginia, $344^{\circ} \mathrm{S}$, $1383^{\circ} 34^{\circ}$ E, SAMA N1988530; jum, Wousds Flut, $34^{\circ} 12^{\prime} \mathrm{S}, 139^{\circ} 38^{\circ} \mathrm{E}, \mathrm{SAMA}$ N1989273.

Holconia jmmanis (L. Koch)

(Figs 1, 8, 18, 22-23, 35)
Delena immanis L. Koch, 1867: 208, Syntypes D, \square, Brishane, Queensland, NHMW_{L} not located, presumed lost, One cr in NHMW [1884.1.454 (960)] with red ' T ' on label but locality is Rockhampton, Queensland. Other material in NHMW seen (1882.11.38.) is not marked type and does not match data given by Kosh (1867). "Syntypes', Brisbane, Queenstand, ZMH (Mus. Godeffroy Ne 2285), may not be valid syntypes but material determined latet by Koch (1875). One 'syntype' female examined.
Voconia immaris: L. Koch, 1875: 642, pl. 51, fig. 4. Holconia immanis: Karseh, 1878: 792. Hirs1, 1990; 18.

Jsopeda immanis: Hogg, 1902: 432,
Mygale white Bonnet, 1957. 2994. Determmation of 'white jointed spider', illustrated but not mamed by White, 1790. New synanymy.

Diagnosis

Abdomen dorsaliy with black anterior streak: venter with blackish badge markings. Chelicetae with retromarginal distal rooth largesi. Male with relatively farge subembolic apopliysis; embolus usually with between $91 / 4$ to 10 coils. Eemale epigynum relatively smaller than in other species, narrow anteriorly; lateral tims in anterior half usually diverging gradually or somewhat parallel to slightly broader posterior; epigynal scletite large.

Female ZMH 2285

Cl 13.5, CW 139, AL 20.5, AW 17.0.
Colour in alcohol: Carapace red-brown; orangebrown posterior and lateral margins. Selae brownblack medially; adpressed whitish setae around ocular area; long whitish setae on lateral margins. Chelicerae dark red-brown to blackish; long yellowwhite setae. Maxillae and labium brown-black, Sternum dark red-brown; long blackish setae. Legs dark red-brown: venter of anterior tibiae with whitish setae medially. Abdomen yellowish with brownesh suffusion giving rise to brown-black setac and forming a pattern dorsally and lalerally; venter with blackish narkings contained within 2 palc ' U ' shaped lines.

Eyes: AME 0.90, AME: ALE: PME: PLE $=1$: 1.11: 0.55: 0.66. Interspaces: AME-AME 0.44, AME-ALE 0.56, PME-PME 1.44, PME-PLE 1.78. AME-PME 0.77, ALE-PTE 1.11, MOQ, iW: pW: 1. 2.33: 2.54: 2.22. Width of clypeus to AMME 0.33. Chelicerae: requmaminal eeth 5 ; distal logith largest Semmen: L 7.4, W 6.0. Legs: anterior leg rallas. $1=4.4,11=4.9$,

Epieynum: (Fig. 22) laterat sides gradually diverging fom relativels hat row abicrion, pusterior batr troader, epigynal scterite long, broad

FIGURES 22-28. Holconia female epigyne. 22-23, H. immanis (L. Koch): 22, syntype ZMH 2285; 23, SAMA N1988510, spermathecae. 24, H. insignis (Thorell), SAMA N1988520, right insemination duct, dorsal. 25, H. nigrigularis (Simon), holotype Isopeda simoni Rainbow, 26, H. flindersi, allotype. 27-28, H. murrayensis: 27, allotype; 28, SAMA N1988536, spermathecae and epigynal sclerites. es, epigynal sclerite. Scale line 0.5 mm .

Mate SAMA N1988515 (as fersale exeept as follows) CL 10.54. CW 10.32. AL 12.80, AW 9.65.
Eyes: AME 0.74. AME: ALE: PME: PLE $=1$: 1.03: 0.59: 0.96. [nterspaces: AME-AME 0.34, AME-ALE 0.36, PME-PME 1.38, PME-PLE 1.50, AME-PME 0,72, ALE-PLE 0,81 MOQ, aw: pw: $I=2.34: 2.57: 2,27$. Width of elypeus to AME 1.46. Labium: L 1.84, W 2.04. Sternum: L 5.56. W 4.79. Legs: anterior leg ratios $\Gamma=5,0, \Pi \Gamma=5,9$,

Palps: Subembolic apophysis large, knob-like. Embolic coils slightly greater than $93 / 4$,

Varalion

Carapace length of males, 10.64-14.21, mean $12.45(\mathrm{n}-3)$. Embolic coils of 28 males examined showed a range greater than one complete coil, most had $91 / 2$ colls $(n-16)$, others were with $93 / 4(n=5)$, 10 to $101 / 2(\mathrm{n}=4)$ and 9 to $91 / 4(\mathrm{n}=2)$. Carapace length of Pemales, 13.38-15.02, mean $14.37(n=6)$. Insemination duct coils 10. Epigymum occasionalfy narrow, having somewhat parallel lateral rims in anterior hall. Sternum occasionally dark reddish-brown.

Distribution

Decurs along the east coast of Australia from Thursday Istand, Queensland, sourhwards to Nowa Nowa, Victoria. It is largely restricted to the eastern sidc of the Great Dividing Range (Fig- 35),

Other material exantined

Queensiand: α, Atherton, $17^{\circ} 16^{\prime} \mathrm{S}, 145^{\circ} 29^{\prime} \mathrm{E}$, QM SI2604; of, same localily, AM KS19702; o, Boonah, $28^{\circ} 00^{\prime} \mathrm{S}, 152^{\prime} 41^{\prime} \mathrm{E}, \mathrm{QM}$ SI2605; \circ^{\prime}. Brisbane, QM S12606; R. Byfield, $22^{\circ} 51^{\prime} \mathrm{S}$, $150^{\circ} 39^{\circ} \mathrm{E}$. AM KSI9723; 8, Cairns, $16^{\circ} 55^{\prime} \mathrm{S}$, $145^{\circ} 46^{\prime} \mathrm{E}$, QM S 12607°, \&, same locality, $\lambda \mathrm{M}$ KSI970K): Q, Calliope, $24^{\circ} 00^{\circ} \mathrm{S}, 151^{\circ} 12^{\prime} \mathrm{E}, \mathrm{QM}$ S12608; P. Cape Hillsborough, $20^{\circ} 54^{\prime} \mathrm{S}, 1499^{\circ} 03^{\prime} \mathrm{E}$, QM SI2609; 2 or or, Closeburn, Brisbane, $27^{\circ} 20^{\circ} \mathrm{S}$, $152.52^{\prime} \mathrm{E}, \mathrm{QM}$ S12610-11; 2 Q Q. Coolum, $26^{\circ} 33^{\prime} \mathrm{S}, 153^{\circ} 05^{\prime} \mathrm{E}, \mathrm{NMV}$; Q, Cunninghams Gap, $28^{\circ} 03^{\prime} \mathrm{S}, 152^{\circ} 24^{\circ} \mathrm{E}$, QMI S12613: 2 Q Q, Dunk: Island, $17^{\circ} 57^{\prime} \mathrm{S}, 146^{\circ} 09^{\prime} \mathrm{E}$, SAMA NI988513-4; 马. Eumundi, $26^{\circ} 29^{\circ} \mathrm{S}, 152^{\circ} 57^{\circ} \mathrm{E}, \mathrm{NMV} ; 0^{\circ}$, Eurambala, Brisbane, QM SI2614; of, Ferny Hilts, Brisbane, GM SI2615; Q Fithoy Istand, $16^{\prime \prime} 56^{\prime} \mathrm{S}$, $146^{\circ} 00^{\prime}$ E, AM KS19708; 2 Q 9 , Fraset Istand $25.33^{\prime} \mathrm{S}, 152^{\circ} 59^{\circ} \mathrm{E}$, AM KSi9698. AM KS $\mathrm{K} 19701-$ 0 , Gin Gin, $25^{\circ} 00^{\prime} S, 151^{\circ} 57^{\prime} \mathrm{E}$, QM S12616; or Gumdale, Brisbane, QM S12617: Q, Gympie, $26^{\circ} 11^{\prime} \mathrm{S}, 152^{\circ} 40^{\prime} \mathrm{E}$ QM SI26I8; juy., Herberton, $17^{\circ} 23^{\circ} \mathrm{S}, 145^{\circ} 23^{\prime} \mathrm{E}, \mathrm{AM} \mathrm{KS} 19645 ; \sigma^{\circ}$. Highvale, Brisbane, QM S12619; of, penuli. q. Holloway Beach, $16^{\circ} 50^{\circ} \mathrm{S}, 145^{\prime \prime} 44^{\prime}$ E, SAMA N1988515-6: 7, Jimhoomba, $27^{\circ} 50^{\circ} \mathrm{S}, 153^{\circ} 02^{\prime} \mathrm{E}, \mathrm{QM}$ S $12620, \mathrm{Q}$, Koongal, $23^{\circ} 23^{\prime} \mathrm{S}, 150^{\circ} 33^{\prime} \mathrm{E}$, AM KSl6630; Q, Logan River, $28^{\circ} 16^{\prime} \mathrm{S}, 152^{\circ} 44^{\circ}$ E, SAMA N1988512; σ^{\prime}, Martaybrook, $26^{\prime \prime} 54^{\prime} \mathrm{S}, \mathrm{IS1}^{\circ} 36^{\prime} \mathrm{E}, \mathrm{QM}$ S12621;
Q. North Pine River, $27^{\circ} 16^{\prime} \mathrm{S}, 152^{\circ} 55^{\prime} \mathrm{E}, \mathrm{QM}$ S12622; O', Nuridah, Brisbanc, $27^{\circ} 25^{\prime} \mathrm{S}, 153^{\circ} 03^{\prime} \mathrm{E}$, QM S12623; $40^{\circ} 0^{\circ}$, Percy 1stand, $21^{\circ} 42^{\prime} S$, $150^{\circ} 20^{\prime}$ E, QM SI2624: σ. Proserpine, $20^{\circ} 24^{\circ} \mathrm{S}$ $148^{\prime} 35^{\prime} \mathrm{E}$, QM SL2625; ©, Redbank, $27^{\circ} 36^{\prime} \mathrm{S}$, 3S2052'E, QM Si2626; 9, Rockhampton, 23'22'S, $150^{\circ} 32^{\prime}$ E, AM K\$16659; juy., same locality, AM KS19644; 0°, Scarborough, $27^{\circ} 12^{\prime} \mathrm{S}, 753^{\circ} 07^{\prime} \mathrm{E}, \mathrm{QM}$ S12627; or, Stradbroke [sland, oa $27^{\circ} 50^{\circ} \mathrm{S}$, $153^{\circ} 25^{\prime} \mathrm{E}, \mathrm{NMY} ; 2 \mathrm{O}^{\circ} \mathrm{G}$, Thursday Istand, $10^{\circ} 35^{\prime} \mathrm{S}$, $142^{\circ} 13^{\prime} \mathrm{E}, \mathrm{QM}$ S 12628^{\prime}; juv. Warwick, $28^{\prime \prime} 13^{\prime} \mathrm{S}$, $152^{\circ} 02^{\prime}$ E. AM KS20501. New South Wales: 2 of of juv., Brooklana, $30^{\circ} 16^{\prime} \mathrm{S}, 152^{\prime} 53^{\prime} \mathrm{E}$, AM KSI9706; 2 or or, Brunswick Heads, $28^{\circ} 32^{\prime} \mathrm{S}, 1533^{\prime} 33^{\prime}$ E, SAMA Ni988508-9; O. Charlestown, $32^{\circ} 58^{\circ} \mathrm{S}$, $151^{\circ} 41^{\prime}$ E, AM KSI9707: Q, Congarinni, $30^{\circ} 44^{\prime}$ S, $152^{\circ} 52^{\prime} \mathrm{E}, \mathrm{AM} \mathrm{KSI7879}$; i, Coraki, $29^{\circ} 00^{\prime} \mathrm{S}$, $153^{9} 17^{\prime} \mathrm{E}$, AM KSl6535; 2 Or or, Cudgen, $28^{\circ} 16^{\prime} \mathrm{S}_{1}$ $153^{\circ} 33^{\prime}$ E, QM SI2612; O', Engadine, Sydney, AM KSI6607; Q. Gladesville, Sydney, AM KS19655; \&, Glenhaven, $31^{\circ} \mathrm{II}^{\prime} \mathrm{S}, 15 \mathrm{I}^{\circ} 58^{\prime} \mathrm{E}, \mathrm{AM}$ KSI9697: Q , Goonengerry, $28^{\circ} 37^{\prime} \mathrm{S}$, $153^{\circ} 26^{\circ} \mathrm{E}$, AM KS19717; 8 , Gordon, Sydney, AM KS19704; juv., Gosiord, $33^{\circ} 26^{\prime} \mathrm{S}, 151^{\circ} 20^{\prime}$ E, AM KS19673: q, Gratton, $29^{\circ} 41^{\prime}$ S, $152^{\circ} 56^{\prime}$ E, NMV: Q, same locality, AM KS17183; juv.. Macksville, $30^{\circ} 43^{\prime}$ S, 15 2 $^{\circ} 55^{\prime}$ E, AM KS18271, Q . Mona Vale, Sydney, AM KS18390; Q, Mooney Mooney, $33^{\circ} 31^{\prime}$ 'S, $151^{\circ} 12^{\prime} \mathrm{E}$, AM KS1967d; penult, σ^{\prime}, Mullumbimby, $28^{\circ} 33^{\prime} S, 153^{\prime} 30^{\prime} \mathrm{E}$, AM KS19716; O, Mumbuila, ca $36^{\prime \prime} 33^{\prime} \mathrm{S}, 149^{\circ} 52^{\prime} \mathrm{E}$, AM KS 19715 ; juv, Nadgee, $37^{\circ} 28^{\circ} \mathrm{S}$, $149^{\circ} 58^{\prime} \mathrm{E}$,
 AM KSi6595; ~, 2 juv., Nowta, $34^{\circ} 53^{\prime} \mathrm{S}_{\tau}$ 15036 E, SAMA Ni988505-7; 8. Pennant Hills, Sydney, AM KS19672, \mathscr{O}°, Siotts Jsland, Tweed River, $28^{\circ} 16^{\prime} \mathrm{S}, 153^{\circ} 30^{\prime} \mathrm{E}, \mathrm{QM}$ SI2593; juy, Taree, $31^{\circ} 54^{\circ} \mathrm{S}, 152^{\circ} 29^{\circ} \mathrm{E}$, AM KSI6680; © , Tooloom, $28^{\circ} 37^{\prime} \mathrm{S}, 152^{\circ} 25^{\circ} \mathrm{E}$, AM KS16605; 2 juv, same locality, AM KSi 6631 ; P. Turramurra, $31^{\circ} 20^{\prime}$ S, $1500^{\circ} 59^{\circ} \mathrm{E}, \mathrm{AM} \mathrm{KS} 19699$. Victeria: O, 3 Q Q. Noorinbee, $37^{\circ} 3 L^{\prime} \mathrm{S}, 149^{\circ} 10^{\prime} \mathrm{E}$, AM KS19948. AM KS19719-21; Q, Nowa Nowa, $37^{\circ} 44^{\circ} \mathrm{S}, 148^{\circ} 06^{\prime} \mathrm{E}$, AM KS19718.

The hirsula Group

Two species, H, hirsura and H. neglecta, differ from the insignis group only in the lower number of coils in the embolus of the male and spermatbecae of the female, the retromargimal eheliceral teeth being closer to the fang base and the female epiggnum relatively broader posteriorly. The group has a northern distribution.

Holconis hirsula (L, Koch)
(Figs 5, 11, 20, 29-30, 36)
Isopedu hirsuIa L. Koch, 1875; 693, pl, 59, lig. I. Holorype a, Bowen [20.01'S, $148^{\prime} 15^{\prime}$ E],

FIGURES 29-34. Holconia female epigyne, 29-30, H. hirsuta (L. Koch): 29, holotype H. subdola Thorell; 30, SAMA N1988517, spermathecae. 31, H. neglecta holotype, spermathecac. 32, H. westraliu allotype, spermathecae. 33-34. H. colberti: 32, allotype; 33, paratype NMV K-0922, spermatheeac. Scale line 0.5 mm .

Queensland, ZMH (Mus. Godeffroy Nr 11013), left palp examined (whole specimen in poor condition, not able to be sent).
Holconia hirsuta: Hirss, 1990: 18.
Holconia subdola Thorell, 1881: 304. Holotype, P. Somersel [10'45'S, $142^{\circ} 35^{\prime}$ E]. Quecnsland, 1875, L.M. D'Albertis. MCG, examined. New synomymy,

Diagnosis

From ather species by the male having only $71 / 2$ 108 embolic coils (except A, neglecta in which the unknown male is also expected to have a similar coil number), a shorter palpal tibial apophysis and small subembolic apephysis, From H. neglecta in the female by the epigynuni lateral rims being somewhat parallel in anterior half then diverging sharply to broad posterior hati, epigynal sclerite small and relatively short,

Female (holotype H. subdola Thorell)
CL 11.8, CW 11.1. AL 12,5, AW 9.0.
Colonr in alcohol: Carapace and legs dark reddish-brown; caput and striae darker. Abdomen yellow-brown with patches of orange setac:

Eyes: AME 0,78. AME: ALE: PME: PLE - 1; 1.18: 0.62; 1. Interspaces: AME-AME 0.44, AME-ALE 0.51, PME-PME 1.36, PME-PLE 1.32, AME-PME 0.74, NLE-PLE 1.10. MOQ, aw: pw: $1=2.33: 2.56: 2.31$. Width of dypens to AME 0.36. Cheticerae: retromarginal teeth 5 ; distal footh subequal to subdistal tooth. Labium: L. 1.96, W 2.42. Stermum: L 6,20, W 5.38 . Legs: anterior leg ratios $1=3.7,11=4.5$.

Epigynum: (Fig. 29) lateral rims diverging sharply mid-length to broad posterior; epigynal sclerite small relalively short.

Male QM S12592

CL 9.32, C'W 9.08. AL. 10.65, AW 6.75.
Colour in alcohol: Carapace orange-red, suflused with black: posterior margin yellowish; caput reddish. Chelicerae maxillae and labium reddisit. Sternum and coxae brange, Legs yellow to orangered. Abdomen yellowish-brown with faint mottled patcern and doesal anterior pale sireak of brown and orange setac; venter yellowish with brown suffusjon.

Eyes: AME 0,66. AME: ALE; PME: PLE $=1$: 1.15: 0.69: 1,14. Goterspaces: AME-AME 0.27, AME-ALE 0.30, PME-PME 1,18, PME-PLE 1.41, AME-PME 0.82, ALE-PLE 0.85, MOQ, aw: Pw: $1=2.27: 2.59: 2.30$. Width of clypeus to AME 0,27. Labium: L 1.67. W 1.83. Sternum: L 5.01. W 4.41, Legs: anterior Ieg ratios I 4,7, 11 not availatole (legs missing).

Palps: Embolus with 8 colts. Holotype with $71 / 2$ coils (Fig, II).

Variation

Carapace lengtit of male QM S12603, 11.3. Embolus with $73 / 4$ coils. Carapace length of females, 11.48-14.50, mean 13.22 ($\mathrm{n}-9$). Vulva of SAMA N1988517 with 8 insemination duet coils, Cheliceral teeth usually with a space subequal to a tooth widiti between median and subdistal teeth.

Distribuizon

Occurs in north-east Queensland from Cape York souph to Townsville, westwards to Hughenden (Fig. 36). A juvenile from Floraville Sration near Burketown and a female from Burketown are tentatively included although the epigynum shape of the female is not characteristic.

Other material examitted

Queensland: q, Burketown, $17^{\circ} 45^{\prime} \mathrm{S}, 139^{\circ} 33^{\prime} \mathrm{E}$, AM KS16643; Q. Cape Pallarenda. $19011 / \mathrm{S}$, $146^{\circ} 46^{\prime} \mathrm{E}, \mathrm{QM}$ S 12599 ; , Chillagoe, $17^{\circ} 09^{\circ} \mathrm{S}$, 144031'E, QM S12600; Q. Davies Creek, $16.55^{\prime} S$, $145^{\circ} 32^{\prime}$ E, QM S 12601 ; O', Finch Hatton, $21^{\circ} 09^{\prime} S$, $148^{\prime} 38^{\prime}$ E, QM S12592i penull. or, Hughenden, $20^{\circ} 51^{\prime} \mathrm{S}, 144^{\circ} 12^{\prime}$ E, QM S12602; juv, Floraville Stm $18^{\circ} 14^{\prime} \mathrm{S}, 139^{\circ} 52^{\prime} \mathrm{E}, \mathrm{QM}_{1}$ juv. Mingeta, $19^{\circ} 53^{\circ} \mathrm{S}$. $146^{\circ} 38^{\prime}$ E, QM: of, 3 Q P, 3 juv., Mt Molloy, $16^{\circ} 41^{\prime} \mathrm{S}, ~\left[45^{\circ} 20^{\circ} \mathrm{E}\right.$, QM S 12603 : juv. Townsville, 19 ${ }^{\circ} 16^{\prime} \mathrm{S}, 146^{\prime \prime} 49^{\circ} \mathrm{E}$, SAMA N1988518; P, Wentock Goldfield, $13^{\circ} 05^{\prime} \mathrm{S}, 142^{\circ} 57^{\prime} \mathrm{E}$, SAMA N N $^{\prime} 988517$.

Holconia neglecta sp. nov

(Figs 31, 36)

Types

Holotype: Q, on shappy gum, $50 \mathrm{~km} \leq W$ Wave Hill, $17^{\circ} 27^{\prime}$ S, $130^{\circ} 50^{\circ}$ E, Northern Territory, 31. viii. 1981, EL. Pamaby, AM KS18913.

Paratype: 8, same data as holotype bul 2130) hours, riverside vegetation. AM KS19957.

Diagnosis

Males unknown. Females diagnosed by the epigynum with laleral cims diverging gradually 10 broad posterior margin; epigynal scterite broad at first then rapidly narrowing. Vulva with insemination ducts coiled 8 times.

Holotype Semale

CL 12.85, CW 12.42. AL. 14.50. AW 9.80,
Colour in aleohol: Carapace orange-red; caput reddish with white adpressed setae, dense in ocular area; sparse black-brown setae form transverse band in region of foved. Cheticerae dark reddish; yellowbrown setac and adplessed white setae Maxillae and labium red-brown. Slernum orange-brown; sparse upright yellow-brown and adpressed white setae.

FIGURE 35. Distribution of Holconia nigrigularis (Simon) - and H. immanis (L. Koch)

FIGURE 36. Distribution of Holconia insignis (Thorell) ○, H. flindersi •, H. murrayensis Δ, H. hirsuta (L. Koch) \square, H. neglecta ∇, H. colberti $\boldsymbol{\Delta}$ and H. westralia \square.

Coxae yellow-brown. Wegs with yellow-brown femora, anterior pairs red-browni distally with blackish suffusion; remaining segments red-brown; tibiae with blackish suffusion at ends. White setae ventrally on femora, parellae and medially on tibiae. Abdomen yellowish with yellow anterior streak: orange-brown serae forming a spotted pattern; venter yellow.

Eyes: AME 078, AME: ALE: PME: PLE $=1:$ 1.09: 0.64: 1.10. Interspaces: AME-AME 0.50, AME-A1.E 0.58 , PME-PME 1.68, PME-PLE 1.85 , AME-PME 0.79 , ALE-PLE 1.23. MOQ, aw: pw: 1 - 2.50: 2.96: 2.33. Width of clypeus to AME 0.32. Chelicerae: retromarginal teeth 5; distal tooth corved towards anterior. subequal to subdistal tooth Labium: 1. 2,26, W 2.68. Sternum: L. 7.12, W 5.73. Legs: anterior leg ration $1=3.8, \mathrm{II}=4.3$.

Epigynum: (Fig. 31) lateral sides diverging to posterior; epigynal seterite large, eurved, narrowing posteriorly.

Variation

Carapace length of paratype, 12.54

Distribufion and remarks

Northern Territory and northeri Western Australia (Fig. 36). A female from Alice Springs is temtatively considered to belong to this taxon. A juvenile from Mitchell Plateau is probably not conspecific as it has a reddish-brown stetnum with blackish sulfusion anteriorly and a yellow-browu posterior margin. The abdomen is not as distinctly marked dorsally while the venter resembles that of If. immanis bur is orangish with orange-brown contained withip whitish U' shaped markings.

Etymology

The specific epithet refleers the pauciry of malure specimens available for study and the consequent incomplete treatpent of this species.

Other material examined

Northern Territory: 9 , Alice Springs, 23 42'S. $133^{\circ} 52^{\prime}$ E, SAMA Ni988519; 2 juv., Hooker Creek, $18^{\circ} 20^{\circ} \mathrm{S}, 130^{\circ} 38^{\prime} \mathrm{E}$, AM KS18912, AM KS20502. Westeri Australia: juv,, Halls Creek, $18^{\circ} 14^{\prime} \mathrm{S}$, $127^{\circ} 40^{\prime}$ E. SAMA N1989274; penult. O, De Grey River, $20^{\circ} 20^{\circ} \mathrm{S}, 119^{\circ} 13^{\circ} \mathrm{E}$, WAM 88/871; juv, Hooley, $21{ }^{\circ} 53^{\prime} \mathrm{S}, 118^{\circ} 13^{\prime} \mathrm{E}$, WAM 88/881, juk., Lowet Carawine Gorge, $21^{\circ} 2^{\prime} \mathrm{S}, 121^{\circ} 02^{\prime} \mathrm{E}$, WAM 88/1822; penulc. O. Millstrean, $21^{\prime \prime} 35^{\prime} \mathrm{S}$ s $117^{\prime \prime} 04^{\prime} \mathrm{E}$. WAM 88/898; juv, Mitchell Plateau, $14^{\circ} 49^{\prime} \mathrm{S}$, $125^{\circ} 50^{\prime}$ E, WAM $88 / 2014$; penult. O', Mi Vernon. $24^{\circ} 09^{\prime} \mathrm{S}, 118^{\circ} 02^{\prime} \mathrm{E}$, WAM $88 / 906$.

The colberti Group

The two species, H. coltherti and H. westralia, have a slightly higher caraprace, clypeus width about
hialf diameter of AME and Tour retromarginal cheliceral teeth. The male embolus is coiled between 10) to $112 / 3$ limes. The group has a southern distribution.

Holconia colberlí sp, nov,

(Figs 7, 12, 33-34: 36)

Types

Holotype: or, sile 59, drift tence pitfall trap, 14, A km SE Walpeup, $35^{\circ} 11^{\prime} \mathrm{S}, 142^{\circ} 11^{\prime} \mathrm{E}$, Vietoria, Jan. 1987, A.L. Yea, NMV K-0919.
Allotype: P, Lake Hattah, $34^{\circ} 44^{\prime} \mathrm{S}, 142^{\circ} 21^{\prime} \mathrm{E}$, Maller, Victoria, Oct, 1915, J,E. Dixon, NMV K-0920.

Paratypes: P, same dala as allotype, NMY K-0921; \&, Kewell, $36^{\circ} 3 L^{\prime} \mathrm{S}, 142^{\circ} 21^{\prime} \mathrm{E}$, Victoria, Noy. 1892, J.A. Kershaw, NMV K-0922.

Diagnosis

Catapace high but flatish above. Male embolus with $11 / 4$ to $112 / 2$ coils; subermbolic apophysis broad. Fomales with relatively short, broad epigynal selerite; insemination duets coiled 11 tomes.

Holotype male

CL 10,95 , CW 10,42, AL 13.50, AW 8,65,
Colour in alcohol: Carapace reddish-brown. darker suffusion; Lateral eye surrounds blackish mesally. Blackish setae on carapace; some white setae in ocular area. Chelicerac dark red-brown to blackish; long yellowish and short recumbent setae Maxillae and labium as chelicerae. Sternum orangeyellow: Coxae yellowish, Legs red-brown; 保ora paler with blackish suffusion at base proventrally; spine bases darker red-brown; setae blackish; sparse white recumbent setae on femora, patellae and (ibiae, mostly proventral Abdomen dorsally yellowish with brown markings; anterior median streak indistinct; venter pale yellow.

Eyes: AME 0.64, AME: ALE: PME: PLE $=1$: 1.22: 0.75: 1.19. Interspaces: AME-AME 0.56, AME-ALE 0.38, PME-PME 1.47, PME-PLE 1.75, AME-PME 1.16, ALE-PLE $1.25, \mathrm{MOQ}$, atw: Pw: $1=2.56: 2.97: 1,31$, Width of clypeus to AME 0.52 . Chelicerae: reiromarginal teeth 4 , closely spaced; distal subequal, angled more anteriorly. LatiumL 1.78, W 2.14. Sternum: L 5.58, W 4.99. Legs: anterior leg ratios $1=4.3,11-4.9$.

Palps: Embolic base relatively large: subembolic apoptysis broader than in other species (Fig. 7). Embolus coiled almosi $113 / 1$ times.

Altorype female (as male except as follows)
CL 12.95, CW 12.65. AL 17.00, AW 12.50.
Colour in alcohol: dark red-brown.

Eyesi AME 0.72. AME: ALE: PME: PLE $=1$: $1.28=0.67: 1.15$. Interspaces AME-AME 0.55 , AME-ALE 0.61. PME-PME 1.61. PME-PLE 2.06, AME-PME 1, ALE-PLE 1.36, MOQ aw: pw: $1=$ 2.56: 2.94: 2,64. Width of clypeus to AME 0.54. Labium: L 2.36, W 2.65, Sternum: L. 6.74, W S.68. Legs: anterior leg ratiog $1-40,11=4.7$.

Epigynum: (Fig, 33) not much broader posteriorly; epigynal sclerile relatively short.

Variation

Carapace length of males, 10.56-12.65, mean $11.53(\mathrm{n}=3$; embolus of 2 specimens coiled $111 / 4$ times and 1 coiled $111 / 2$ times). Carapace length of fernales, $11,02-14.89$, mean $12.70(\pi=16)$. Vulva of paratype NMV K-0922 (Fig, 34) with sharply curved spermathecal sacs and 11 insemination coils. Two specimens have 5 rerromarginal teeth on either left or right chelicera and a further two are with 5 un both chelicera, One male has only 3 teeth on the left chelicera. Leg If may be relatively shorter than in other species and the anterior legs appear more rabust.

Distribution

Western Victoria from Broughton eastwards to Elmore, and Hattah Lakes southwards to at least Marong near Bendigo (Fig. 36). One female from Melbourne may have been Iransported in with timber.

Eymology

Named afler the owners of a property SW of Broughton, Victoria, where I had the opporturgity to collect several specimens.

Other material examined

Victoris: 2 or, 8 马 q : penulc. of, SW Broughton, $\quad 36^{\circ} 12^{\prime} \mathrm{S}, \quad 141^{\circ} 19^{\prime} \mathrm{E}, \quad$ SAMA N1989605-15, juv., same locality, SAMA N1989275; Qt, 3 q q, Charlion, $36^{\circ} 16^{\prime} \mathrm{S}, 143^{\circ} 21^{\mathrm{E}} \mathrm{E}, \mathrm{AM}$ KS19949; 9 , Elizabeth St, Melboume, NMV: juv. Elmore, $36^{\circ} 30^{\circ} \mathrm{S}, 144^{\circ} 37^{\prime} \mathrm{B}$, SAMA N1990273; \%, Hattah Lakes, $34^{\circ} 44^{\prime} \mathrm{S}, 142^{\circ} 21^{\prime} \mathrm{E}_{1}$ AM KS19951; penult. Q juv., same data as allotype, NMV; juv., Kewell, same data as paratype, NMV; penult. Or, juv., mallee scrub, western district, Feb. 1884, NMV; 2 QP, Marong, $36^{\circ} 44^{\prime} \mathrm{S}$, $144^{\circ} 08^{\prime} \mathrm{E}$, AMKS 19952 , AM KSI9955; juv., Onyen, $35^{\circ} 04^{\prime} \mathrm{S}, 142^{\circ} 19^{\prime} \mathrm{E}$, NMV: 5 , juv, Warrack rabeal, $36^{\circ} 15^{\prime} \mathrm{S}, 142^{\circ} 24^{\prime} \mathrm{E}$, NMV

> Holcontig westralia sp. bov.
> $($ Pigs $5,13,21,32,36)$

Types

Holotype: or, Salmon Gums Pre-Primary School, $32^{\circ} 59^{\prime}$ S, $121^{9} 39^{\prime}$ E, Western Australia, 11. iii. 1983, N, Contreau, WAM 86/688.

Allotype: Q, on log, WL South Camp, Woodline, $31^{\circ} 54^{\prime} S, 122^{\circ} 24^{\prime}$ E, Western Australia, WAM Goldfields Survey, Aug. 1980, W.F. Humphreys et al.s WAM 88/926.

Paratypes: σ°, Yellowdine, $31^{\circ} 18^{\prime} \mathrm{S}, 119^{\circ} 39^{\prime} \mathrm{E}$, Western Australia, 5. xi, 1970, W.H. Butler, WAM 86/683: p, N of Lake Hope, $32^{\circ} 16^{\prime} \mathrm{S}, 120^{\circ} 16^{\prime} \mathrm{E}$, Western Australia, 26. ix, 1978, Barron and Harold, WAM $88 / 890$.

Diagnosis

Carapace slighlly convex; chelicera usually with 4 retromarginal teeth. Male embolus with 10 to $101 / 4$ cails. Female with long narrow epigynal sclerite.

Halolype male

CL 11.82, CW 11.01. AL 11.95, AW 8.25.
Colour in alcohol: Carapace orange-red, posterior and laterals paler, eaput dark red. Chelicerac dark red-brown; yellow setae; some adpressed white setae proximally. Maxillae and labium dark red-brown. Sternum yellow-brown; brownish and white setae Coxae yellowish. Anterior legs orange-red, posterior legs yellow-red; metatarsi and tarsi reddish. Setae bases dark coloured; nummerous elumps of whitish setae dorsally, Venter of patellae and tibiae medially with long whitish setae, Abdomen yellow-brown with darker paiches; 3 indistinct palrs of blackish spots; anterior streak with orange-red seiae; venter yellowish; yellowbrown selae.

Eyes: AME 0.71. AME: ALE: PME: PLE - 1: 1.24: 0.73: 1.07. Interspaces: AME-AME 0.41. AME-ALE 0.35, PME-PME 1,15, PME-PLE 1.30, AME-PME 0.86, ALE-PLE 0.87, MOQ, aw: pw: $1-2.41: 2.62: 2.56$. Width of clypeus to AME 0.51. Chelicefae: retromarginal teeth 4 consisting of a small basal tooth and 3 well-spaced larger teeth of which the distal is smallest (Fig. 21), Labium: 1.1.94, W 2,24. Sternum L 5.96, W 5,18. Legss anterior leg $\mathrm{Talios} I-4.5,1]=5.3$.

Palps: Titial apophysis barely curved inwards at apes. Subembolic apophysis small, base inclined (Fig. 6). Embolus with 10 coils.

Allotype fernale (as holotype except as follows) CL 11.93, CW 11.18. AL 14.45, AW 11.65.
Eyes: AME 0.71. AME: ALE; PME: PLE - 1; 1.20: 0.69: 1.10. Interspaces: AME-AME 0.42. AME-ALE 0.38. PME-PME 1.29, PME-PLE 1.61, AME-PME 0.92, ALE-PLE 1.01. MOQ, 3w: pw: $1=2.42: 2.68: 2.44$. Width of clypeus to AME 0,45. Chelicerae: right chelicera with additional small basal tooth on retromargin; teeth more closely spaced, Labium; L 1.96, W 2.38. Sternum; L. 6,09, W 5.38. Legs: anterior leg ratios $1=3.9,1[-4.5$,

Epigynum: (Fig. 31) epigynal sclerite long; nattow.

Variation

Carapace length of males, 9.80-11.65, mean 10.91 $(\mathrm{n}=7$). Embolus coils 10 to 10/4. Cafapace lengith of females, $11.55-13.52$, mean $12.53(\mathrm{n}=11)$. Most often with 4 retromarginal cheliceral teeth, Tarely with 5 on both chelicera.

Disiribution

Semi-arid and areas of moderate rainfall in solthwest Western Australia (Fig. 36).

Other materiul examined

Western Anstralia: Q. Booanya, $32^{\prime \prime} 46^{\circ} \mathrm{S}$ $123^{\circ} 26^{\prime}$ E, NMV: 2 juv, same locality, AM KS19647. AM KS19658, 6 juy., Buningonia Spring, ca $31^{\circ} 25^{\circ} \mathrm{S}, 123 \circ 34^{\circ}$ E, WAM 88/2047-50, WAM 88/2052-3; juv. Cottesloe, Perth. WAM 12/5132; 2 qo, 2 Qq. 3 juv., Darlington, $31^{\circ} 55^{\prime} S$, $116^{\circ} 04^{\prime} \mathrm{E}$, WAM 86/642-4, WAM 88/1833-4, WAM 88/1836-7. juv, Diemals, $29^{\circ} 40^{\prime} \mathrm{S}, 119^{\circ} 18^{\prime}$ E, WAM $88 / 872$; Q. Fremantle, Perth, WAM 88/I845; juv., Glen Forrest, $31^{\prime \prime} 55^{\prime} \mathrm{S}, 116^{\circ} 06^{\prime} \mathrm{E}$, WAM 88/1533; \&, Goosebery Hill, $31^{\circ} 57^{\circ} \mathrm{S}, 116^{\prime} 03^{\prime} \mathrm{E}$, WAM $88 / 1850$; ${ }^{\circ}$, Hovea, $3 L^{\circ} 52^{\prime} \mathrm{S}$, $116^{\circ} 06^{\circ} \mathrm{E}$, WAM 88/1856: 2 or ot, Kalamunda, 31 58' $\mathrm{S}_{\text {, }}$ $116^{\prime \prime} 03^{\prime} \mathrm{E}$, WAM 88/1858-9; of, Kalgoorlie, $30^{\circ} 45^{\prime} \mathrm{S}_{\mathrm{v}} \quad 121^{\circ} 28^{\prime} \mathrm{E}, ~ N M V ; 2$ QQ, 1 ju\%. Katanning, $33^{\circ} 41^{\prime} \mathrm{S}, 117^{\circ} 33^{\prime} \mathrm{E}$, WAM 887884-6; juv., Lake Indoon, $29^{\circ} 52^{\prime} \mathrm{S}, 115^{\circ}\left(99^{\prime} \mathrm{E}\right.$, WAM 88/244(); juvi, Madura, $31^{\circ} 53^{\prime} \mathrm{S}, 127^{\prime} 03^{\prime} \mathrm{E}$, WAM 88/894; juv., Malrogany Creek. $31^{\circ} 54^{\prime} \mathrm{S}, 116^{\circ} 08^{\prime} \mathrm{E}$, WAM $88 / 187 \mathrm{~F}$: P Mlidand Juncion, Perth, WAM 88/897; juw. Mr Pleasant, Perth, WAM 88/1881: ct. Parkerville. $31^{\prime} 53^{\prime} \$, 116^{\circ} 08^{\prime}$ E, WAM 86/667; Q. Pearce, $3140^{\prime} \mathrm{S}, 116^{\circ} 01^{\circ}$ E, WAM 88/915; C°, Perth, $31^{\circ} 57^{\circ} \mathrm{S}, 115^{\prime \prime} 51^{\circ} \mathrm{E}$, WAM 86/668; 甲, Toodyay, $31^{\circ} 33^{\prime} \mathrm{S}, 1168^{\prime} \mathrm{E}$, WAM 88/916; 2 juy, Walk Walkin, $30^{\prime} 49^{\prime}$ S, 117 19^{\prime} E, WAM 40/1075-6; juv., Wanneroo, $31^{\prime} 45^{\prime}$ S. 115 48 E, WAM $88 / 1772$. penulc. 9 , Wellard, $32166^{\prime} \mathrm{S}, 115.51^{\prime} \mathrm{E}$, WAM 88/1919; Q. Wembley; Perth, WAM 88/1921: 5 juv, Woodline; $31^{\circ} 53^{\prime} \mathrm{S}, 122^{\prime 2} 27^{\prime} \mathrm{F}$, WAM 88/2090. WAM 88/2099-100, WAM 88/2104; j0v. Wundowie. $31^{\circ} 46^{\prime} \mathrm{S}, 116^{\circ} 23^{\prime}$ E, WAM $88 / 931$; juv. Valgoo, 2821 S, $116^{\circ} 41^{\prime}$ E, WAM 26/683.

The aigrigularis Group

This 'group' emusists of anty one species, H. nigrigularis, which has a flatter catapace, subembolic apophysis of the male not conneeted directly to the tegulum, female with broad epigynum and relalively straight spermathecal sacs. It occurs in arid to semi-arid areas.

Holconia nigrigntaris (Simoni)

(Figs 14-17, 25, 35)
Isopoda nigrigularis Sitnon, 1908: 438. Syntype or, Stat [ion]. 70, Tamala $\left[26^{\circ} 42^{\prime} 5,113^{\prime} 43^{\prime}\right.$ E], Wegtern

Austraba, ZME 28.740, examined. Simon (1908) also lists Northampton. Western Australia, as a locality record but without giving further details of any specimen. Whereabouts of that specimen is unknown.
Esopoda woodwardi Simon. 1908: 437. Holotype Q, Statlion]. 93, Kalgoorlie [$30^{\circ} 45^{\prime} \mathrm{S}, 121^{\circ} 28^{\prime} \mathrm{E}$], Western Australia, ZMB 28.739, examined.
Esopeda simoni Rainbow, 1911: 234. Nom, nov. for Lsopeda woodwardi Simon, 1908, homanym al ssopeda woodwardi Hogg, 1902. New synonymy. Holconia nigrigularis: Hirst, 1990: 18,

Diagnosis

H. nigrigularis is separated from other species by the flatter carapace. 8-9 times langer than high. depressed medially. Clypeus width aboni $1 / 2$ diameter of AME . Abdomen wirhout a distinet pattern but with grey-black venter. Chelicera usually with 4 retromargimal teeth, Male embolic base with prodistal low rounded subembolic apaphysis not fixed to tegulum; srriations near embolus origin; embolus usually with 9 to $91 / 4$ coils but may have a half coil more or less. Female epigynum broad, rounded. Epigynal sclerile narrow: short to moderate length. Spernathecal sacs siraight to gently curved.

Holowpe male

CL 7.7, CW 7.5. AW 9.0. AL 5,5
Colour in alcohol: Carapace reddish-ycllow, strita reddish; white and brown-black adpressed setac, Chelieerae reddish with erect yellow-white setae. Maxillae and dabium orange-red brown. Stermum yellowish medially: margins and anterior portion yellow-brown. Palps yellowish; cymbium yellowbrown. Coxac cream-yellow: Legs orange-yellow. Abdomen dorsally yellowish with clusters of reddisti-brown or orange setae forming a vague pattern; venler with large ill-defined grey-black pater.

Eyes: AME 0.54. AME: ALE: PME: PlE = 1: 1.11: 0.51: 1. Interspaces: AME-AME 0.25, AME-ALE 0.32, PME-PME 1.33, PME-PLE 1.50, AME-PME 0.74, ALE-PLE 0.97 . MQQ, aw; pW: $1=2.44 ; 2.50: 2,10$. Width of elypeus to AME 0.I3. Chelicerae: rettomarginal teeth 4 , closely spaced: distal tooth shorter than subdistal. Labium: L. L.26, W 1.54 . Sternum; L 4.4, W 3.7. Legs: anterior leg ratios $1=4.7, I I=5.5$.

Palps: Embolus coiled 8% times.

[^0]Eyes: AME 074, AME; ALE: PME: PLE $=1$: 1.11: 0.54: 0,69 Interspaces: AME-AME 0.38. AME-ALE 0.53, PME-PME 1.43, PME-PLE 1.35, AME-PME 0.73, ALE-PLE 1.08. MOQ, Jw: pw: $1=2.35: 2.54: 2.11$. Width of clypens to AME 0.14. 1.abium: L2.00, W 2.50. Sternum: L 6.70, W 5.40. Legs: anterior leg ratios $[-3.8, I I=4.5$.

Epigynum: (Fig, 25) Anterior broadly rounded; lateral rims somewhat parallel, barely diverging, not much broader posteriorly. Epigynal sclerite narrow, less than half length of fossa.

Variation

Carapace length of males, 9,58-11,86, mean 10,64 ($\mathrm{n}=9$). Embolic coils 9 to $9 / 4 /$ but one specimen fras $81 / 2$ as in the holotype while another has $91 / 4$. Carapace length of lemales, 10.24-13.67, mean $12.02(\mathrm{n}=21)$, Insemination duct coils 9, Abdomen dorsally may have a pattern consisting of 3 pairs of large brown-black patches.

Distribution and remurks

Oceurs in arid and semi-arid areas of Australia from the west coast of Western Ausiralia through South Australia and southern Northern Territory to south-western Queensland, western New South Wales and north-western Victoria (Fig. 35). Although a large spider, is often found in areas of low trees or mallee where it lives in hollows in the munk as well as under bark. Hogg (1896) incorrectly identified two female specimens (in NMV) of this taxon from Alice Springs as Voconia dolosa. The three male specimens from the same locality have not been seen but are probably also H. nigriguluris.

Other material examined

Western Ausiralia: 8 . Buningonia Spring, $31^{\circ} 24^{\prime} 25^{\prime \prime} \mathrm{S}, 123^{\circ} 34^{\prime} 20^{\prime \prime}$ E, WAM 88/865; 3 juv., same localiry, WAM 88/2052-4; juv., Burnabinmah Station, $28^{\circ} 47^{\prime} \mathrm{S}, 117^{\circ} 22^{\prime} \mathrm{E}$, WAM $88 / 866$; Q , Gonngarrie, $29^{\circ} 53^{\prime} \mathrm{S}, 121^{\circ} 10^{\prime} \mathrm{E}$, WAM 88/880; ?, Gullewa, $28^{\circ} 39^{\prime}$ S, $116^{\circ} 19$ E, WAM B8/1853; P. Kalgoorlie, $30^{\circ} 45^{\prime} \mathrm{S}, 121^{\circ} 28^{\circ} \mathrm{E}, \mathrm{NMV} ; Q$, Messengers Patch, $28^{\circ} 41^{\prime} \mathrm{S}, 116^{\circ} 57^{\prime} \mathrm{E}$ WAM 88/896; ${ }^{\circ}$, Mc Margaret, $28^{\circ} 48^{\circ} \mathrm{S}$, $122^{\prime \prime} 11^{\prime}$ E, WAM $80^{2} / 663$: 8 , Naretha $31^{\circ} 00^{\prime} \mathrm{S}, 124^{\circ} 50^{\prime} \mathrm{E}$, WAM 88/1887. ©, North Irwin River, $28^{\circ} 50^{\prime} \mathrm{S}, 15^{\circ} 42^{\prime} \mathrm{E}$, WAM 88/910; O Randells. (Siding), $30^{\circ} 57^{\circ} \mathrm{S}$, $122^{\circ} 15^{\prime}$ E, BYM 56/A37: jun, Yundamindra, 29.18^{\prime} S, $1222^{\prime} 25^{\prime}$ E, WAM 88/2127. South

Australia: or, Bookabie, $31^{\circ} 51^{\prime}$ 'S, $132^{\circ} 42^{\prime}$ E, SAMA N1988496; penult. ©, Cook, $29^{\circ} 49^{\prime} \mathrm{S}, 130^{\circ} 07^{\prime} \mathrm{E}$, SAMA NI988480; 2 오 9 . Durkin, $30^{\circ} 17^{\prime} \mathrm{S}$, $133^{\circ} 44^{\prime}$ E, SAMA NI988476-7, O, Fowlers Bay, $32^{\circ} 00^{\prime} \mathrm{S}$, $132^{\circ} 27^{\prime} \mathrm{E}$, SAMA N1988486; Q. Gawler Ranges (without exact locality), SAMA N1988488; juv., Lake Acraman, $32^{\circ} 00^{\circ} \mathrm{S}$, $135^{\circ} 32^{\prime}$ E, SAMA N1988489; 2 Q Q, penult, 0°, Lake Gilles, $32^{\circ} 38^{\prime} \mathrm{S}$, $136^{\circ} 53^{\prime}$ E, SAMA NI988490-2; Q, Lincoln Gap, $32^{\circ} 36^{\prime} \mathrm{S}, 137^{\circ} 35^{\prime} \mathrm{E}, \mathrm{SAMA}$ N1988495; $\rho, \quad \alpha$, Locks Well, $30^{\circ} 40^{\prime} \mathrm{S}, 136^{\circ} 03^{\prime} \mathrm{E}$, SAMA N1988482-3; 2 or 0^{\prime}, Mabel Creek, $29^{\prime \prime} 10^{\prime} \mathrm{S}$, $134^{\circ}{ }^{\circ} 0^{\prime}$ E, SAMA N1988484-5; O, Mt Ives Station, $32^{\circ} 26^{\prime} \mathrm{S}, 136^{\circ} 04^{\prime} \mathrm{E}$, SAMA N1988487; juv., Mt Willoughby, $27^{\circ} 58^{\prime} \mathrm{S}, 134^{\circ} 09^{\prime} \mathrm{E}, \mathrm{NMV}$; O', North ${ }^{\prime}$ (no exact locality), SAMA N1988497; ©, Q, juv, Renmark. $\quad 34^{\circ} 10^{\prime} \mathrm{S}, \quad 140^{\circ} 45^{\prime} \mathrm{E}$, SAMA N1988498-500; juv, Stuarts Range, co $29^{\circ} 00^{\prime} \mathrm{S}$, $135^{\circ} 00^{\prime}$ E. SAMA N198848]; 2. OP, Yardea Sration, $32^{\circ} 23^{\prime} \mathrm{S}, 135^{\prime} 31^{\prime}$ E, SAMA N1988493-4; 2 juv., Vokes Hill (no exact focality), SAMA Nj988478-9; 3 오, Wynbring Rocks, $30^{\circ} 33^{\prime} \mathrm{S}$, 133 ${ }^{\circ} 32^{\prime}$ E, NMV Northern Territory: Q, Alice Speings, $23^{\circ} 42^{\prime}$ S, $133^{\circ} 52^{\prime}$ E, NTM A78; ρ, same locality, NMV: juv., Hermannsburg, 23057 S, $132^{\circ} 46^{\circ}$ E, SAMA NI988502; penulc. $\alpha_{\text {. }}$ MacDonnell Ranges, $c a 23^{\circ} 40^{\prime}$ S, $133^{\circ} 00^{\prime} \mathrm{E}$, SAMA NI988501; σ, McGillea, $23^{\circ} 43^{\prime} \mathrm{S}$, $133^{\circ} 48^{\circ} \mathrm{E}$, NTM A95; 9 , Todd River (no exact locality), NTM A14. Queensland; of Thargomindah, $28^{\circ} 01$ ' S , $143^{\circ} 48^{\prime}$ E, QM $\$ 12594$, New South Wales: O, Nymagee, $32^{\circ} 04^{\prime} \mathrm{S}$, $146^{\circ} 19^{\prime} \mathrm{E}$, AM KSI6632; 2 우오, Springs Creek, $31^{\circ} 43^{\prime}$ S, $142^{\circ} 41^{\prime}$ E, SAMA N1988503-4. Victoris: σ. Hattah, $34^{\prime \prime} 4 I^{\prime} \mathrm{S}$, $142^{\circ} 18^{\prime}$ E, NMV: O', Meringur, $34^{\circ} 26^{\prime} \mathrm{S}, 141^{\circ} 26^{\prime} \mathrm{E}_{\text {, }}$ NMY: juv., same locality but $34^{\circ} 24^{\prime} \mathrm{S}, 141^{\circ} 23^{\prime} \mathrm{E}$, NMV ; ${ }^{\circ}$, Millewa, $34^{\circ} 44^{\circ} \mathrm{S}, 141^{\circ} 04^{\prime} \mathrm{E}, \mathrm{NMV}$; $\mathrm{O}_{\text {, }}$ Walpeup, $35^{\circ} 11^{\prime} \mathrm{S}, 142^{\circ} 11^{\prime} \mathrm{E}$, NMV.

ACKNOWLLDGMENTS

I am grateful to the following for the loan of material and lypes or for information regarding the location of types: Dr Giuliano Doria (MCCi), Dr M.R. Gray and Ms C. Horseman (AM). Dr I. Gruber (NHMW), Dr R,B. Halliday (ANIC). Dr T. Kronestedt (NHRM), Dr B.Y. Main (BYM), Dr M. Malipatil (NTM), Ms C. MePhee and P. Lillywhite (NMV), Dr M. Moric (ZMB), Dr G. Rach (ZMH), Dr R.R. Raven (QM) Dr E. Renter (SMNS) and Ms I Waldock (WAM). Funding was provided by ;n Australian Biological Resources Study (AGRS) granl.

References

BONNET, P. 1957. 'Bibliographia Araneorum'. Vol. 2 (3). Douladoure, Toulousc.
HIRST, D. 1989. A revision of the genus Pediana Simon (Heteropodidae: Araneae) in Australia, Rec. S. Aust. Mus. 23(2): 113-126.
HIRST, D. 1990. A review of the genus Isopeda L. Koch (Heleropodidae: Araneae) itn Australasia with descriptions of two new genera. Rec. S. Aust. Mus. 24(1): 11-26.
HOGG, H. R. 1896. Arancidae. In 'Rep. Horn Expedition to Central Australia', Pt 2 Zoology. Dulau and Co., London.
HOGG, H. K. 1902. On the Australasian spiders ol the subfamily Sparassinac. Proc. Zool. Soc, Lond. 2: 414-466.
KARSCH, F. 1878. Exotisch-arancologisches. Zeits. gesam. Naturw: 51: 323-333, 771-826.
KOCH, L. 1867. Beschrcibungen neuer Arachniden und Myriapoden. Verh. zool.-bot. Ges. Wien. 15: 857-892.
KOCH, L. 1875. 'Die Arachmiden Australiens, nach der Natur beschrieben und abgebillel'. Bauer and Raspe, Nürnberg,
LATREILLE, P. A. 1804. Tableau méthodique des Insectes. Nou: Dict. Hist. Nat, 24: 129-200.
MAIN, B. Y. 1985. Mygatomorphae. In D. W. Walton (Ed.). 'Zoological Catalogue of Australia'. Vol. 3. Australian Government Publishing Scrvice, Canberra.
RAINBOW, W. 1. 1911. A census of Australian Araneidac. Rec. Aust. Mus: 9: 107-319.
SIMON, E. 1880. Revision de la famille des Sparassidae
(Arachnides). Act. Soc: Linn. Bord. 34: 223-351.
SIMON, E. 1892. 'Histoire naturelle des Araignecs:" Vol. 2 (1). Roret, Paris.
SIMON, E. 1903. 'Histoire naturelle des Araignces'. Vol. 2 (4). Roret, Paris.
SIMON, E. 1908. Arancac. Promierc partie. In W. Michaelsen \& R. Hartmeyer (Eds). Die Fauna SudwestAusiraliens: Vol. 1 (12). Fischer, Jena.
THORELL, T. 1870. Araneae nonnullae Novae Hollandiae, descriptae. Öfvers. Kong. Vet.Akad. Förh, 27 (4): 367-389.
THORELL, T. 1877. Studi sui ragni malcsi e papuani, 1. Ragni di Selebes raccolti nel 1874 dal Dolt. O. Beccari. Ann. Mus. Cir. Stor. Nat. Genova 10; 341-634.
THORELL, T. 1881, Studi sui ragni matesi e papuani, 111. Ragni dell'Alstro-Malesia e del Capo York, conservati nel Museo Civico di Storia Naturale di Genova. Anm. Mus. Civ. Stor. Nat. Genova 17: vii-xxvii, 1-720.
THORELL, T. 1887. Viaggio di L. Fea in Birmania e regioni vicine, II. Primo saggio sui ragni birmani. Ann. Mus. Civ. Stor. Nat. Genova (2) 5: 5-417.
THORELL, T, 1892. Studi sui ragni malesi e papuani, IV (2). Ann. Mus. Civ. Stor. Nat. Genova 31: 1-490.
WALCKENAER, C. A. 1837. Histoirc naturclle des Insectes. Aptères, Tome 1. Roret, Paris.
WHITE, J. 1790. Jounnal of a Voyage to New South Wales, with sixty-five plates of non-descript animals. birds, lizards, serpents, curious cones of trees and other natural productions'. Debrett, London.

[^0]: Femate ZMB 28.739 (holotype isopodo wood wardi Simon)

 CL 12.0. CW 11.5. A1 16.4, AW 13.7.
 Colour in alcohol: cephafothorax and legs darker than holotype, abdomen without pattern; venter yellow-brown.

